Forecast comparison of principal component regression and principal covariate regression

نویسندگان

  • Christiaan Heij
  • Patrick J. F. Groenen
  • Dick van Dijk
چکیده

Forecasting with many predictors is of interest, for instance, in macroeconomics and finance. This paper compares two methods for dealing with many predictors, that is, principal component regression (PCR) and principal covariate regression (PCovR). The forecast performance of these methods is compared by simulating data from factor models and from regression models. The simulations show that, in general, PCR performs better for the first type of data and PCovR performs better for the second type of data. The simulations also clarify the effect of the choice of the PCovR weight on the forecast quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case

Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...

متن کامل

Time series forecasting by principal covariate regression

This paper is concerned with time series forecasting in the presence of a large number of predictors. The results are of interest, for instance, in macroeconomic and financial forecasting where often many potential predictor variables are available. Most of the current forecast methods with many predictors consist of two steps, where the large set of predictors is first summarized by means of a...

متن کامل

Predicting the Young\'s Modulus and Uniaxial Compressive Strength of a typical limestone using the Principal Component Regression and Particle Swarm Optimization

In geotechnical engineering, rock mechanics and engineering geology, depending on the project design, uniaxial strength and static Youngchr('39')s modulus of rocks are of vital importance. The direct determination of the aforementioned parameters in the laboratory, however, requires intact and high-quality cores and preparation of their specimens have some limitations. Moreover, performing thes...

متن کامل

A principal component approach to dynamic regression models

In this paper we introduce a dynamic regression model that states how an output is related to an input allowing future values forecasting. The basic tools to set up this model are the orthogonal decomposition of a discrete time stochastic process by means of its principal components analysis, and the linear regression performed on the principal components of input and output processes. The beha...

متن کامل

Functional time series forecasting

We propose forecasting functional time series using weighted functional principal component regression and weighted functional partial least squares regression. These approaches allow for smooth functions, assign higher weights to more recent data, and provide a modeling scheme that is easily adapted to allow for constraints and other information. We illustrate our approaches using age-specific...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2007